MPAT Syllabus 2019&2020

University of Rajasthan, Jaipur

Subject: **CHEMISTRY** Paper II

Inorganic Chemistry

- 1.Periodicity in elements.
- 2.Structure and bonding in homo and heteronuclear molecules, including shapes of molecules.
- 3. Concepts of acids and bases.
- 4. Chemistry of the main group elements and their compounds. Allotropy, synthesis bonding and structure.
- 5. Chemistry of transition elements and coordination compounds bonding theories, spectral and magnetic properties, reaction mechanisms.
- 6.Inner transition elements spectral and magnetic properties, analytical applications.
- 7.Organometallic compounds of transition metals synthesis, bonding and structure and reactivity. Organometallics in homogeneous catalysis.
- 8. Cages and metal clusters.
- 9. Analytical Chemistry-principle, instrumentation and applications of separation techniques, Spectroscopic, electro- and thermoanalytical methods.
- 10.Bioinorganic Chemistry photosystems, metalloporphyrins, metalloenzymes, oxygen transport, electron-transfer reactions, nitrogen fixation.
- 11. Concepts of Supramolecular Chemistry-chemistry of molecular recognition, Classification of Supramolecular Host Guest Compounds. Nature of Supramolecular interactions, cation and anion binding hosts, Applications of supramolecules.
- 12. Physical characterization of inorganic compounds by IR, Raman, NMR, EPR, Mossbauer, UV, NQR, MS, electron spectroscopy and microscopic techniques.
- 13. Nuclear chemistry nuclear reactions, fission and fusion, radio analytical techniques and activation analysis.
- 14. Application of Nano science and technology in Chemistry
- 15. Environmental Chemistry.

Organic Chemistry

- 1.IUPAC nomenclature of organic molecules including regio- and stereoisomers.
- 2.Principles of stereochemistry: configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity, asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction –substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution optical and kinetic
- 3. Reactive intermediates and organic reaction mechanisms.

high

- 4. Concepts of aromaticity-benzenoid and non-benzenoid compounds generation and reactions.
- 5.Pericyclic reactions electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions.
- 6.Common named reactions and rearrangements and their applications in organic synthesis
- 7.Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations. Protecting group chemistry
- 8. Principles and applications of organic photochemistry. Free radical reactions.
- 9. Chemistry of natural products such as steroids, alkaloids, terpenes, peptides, carbohydrates, nucleic acids and lipids.
- 10. Chemistry of aromatic and aliphatic heterocyclic compounds.
- 11.Structure determination of organic compounds by IR, UV, NMR and Mass spectroscopic techniques.
- 12. Catalysis and green Chemistry.
- 13. Medicinal Chemistry.

Physical Chemistry

- 1. Basic principles and application of quantum mechanics hydrogen atom, angular momentum.
- 2. Variational and perturbational methods.
- 3. Basics of atomic structure, electronic configuration, shapes of orbitals, hydrogen atom spectra.
- 4. Theoretical treatment of atomic structures and chemical bonding.
- 5. Chemical applications of group theory.
- 6.Basic principles and application of spectroscopy rotational, vibrational, electronic, Raman, ESR, NMR.
- 7. Chemical thermodynamics.
- 8.Phase equilibria.
- 9. Statistical thermodynamics.
- 10.Chemical equilibria.
- 11. Electrochemistry Nernst equation, electrode kinetics, electrical double layer, Debye Huckel theory. Voltammetry on nanostructured materials. Electrocatalysis. Corrosion and stability of metals.
- 12. Chemical Kinetics empirical rate laws, Arrhenius equation, theories of reaction rates, determination of reaction mechanisms, experimental techniques.
- 13. Concept of catalysis.
- 14.Polymer chemistry. Molecular weights and their determinations. Kinetics of chain polymerization.
- 15. Solid structural classification of binary and ternary compounds, diffraction techniques, bonding, thermal, electrical and magnetic properties.
- 16.Colloids and surface phenomena.
- 17. Data analysis, Precision and Accuracy.