M.Phil./Ph.D. ADMISSION TEST, 2019 & 2020

Paper II

Subject: 107 - CHEMISTRY

	Roll No (In figures)	(In words)
	itori ivo. (in ingures)	(22 10 22 22)
	OMR Sheet Barcode No.	
	C'arreture of Invisional atoms	1 2
_	Signatures of invigilators	1
)	
	Names of Invigilators	1

Time: 2 Hours Max. Marks: 200

GENERAL INSTRUCTIONS

- 1. Read the instructions given on the Question Booklet and OMR Sheet before starting the answers. All the entries should be filled by blue or black ball point pen.
- 2. The Question Booklet contains 100 questions and all questions are compulsory.
- 3. Each question is of 2 marks. There is no negative marking.
- 4. Candidates must ensure that the Question Booklet issued to them has all the questions. Defective Question Booklet can be got changed within 10 minutes.

- प्रश्नों के उत्तर लिखने से पूर्व प्रश्न-पुस्तिका और ओ.एम.आर. शीट पर दिये हुए निर्देश पढ़ें। सभी प्रविष्टियाँ नीले अथवा काले बॉल पॉइन्ट पेन से भरें।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं और सभी प्रश्न अनिवार्य हैं।
- 3. प्रत्येक प्रश्न 2 अंक का है। कोई नकारात्मक अंकन (negative marking) नहीं होगा।
- परीक्षार्थी सुनिश्चित कर लें कि उन्हें जो प्रश्न-पुस्तिका दी
 गई है उसमें सभी प्रश्न अंकित हैं। त्रुटिपूर्ण प्रश्न-पुस्तिका
 10 मिनट की अविध में बदलवाई जा सकती है।

107-Che.-II

P.T.O.

- 5. In case of any discrepancy between English and Hindi versions of a question, English version will be taken as correct, wherever there are both versions.
- 6. Select and darken the circle corresponding to the answer [(A) or (B) or (C) or (D)] in OMR sheet.
- 7. In case more than one circles are darkened in a question, it will not be evaluated.
- 8. Do not make any stray marks on OMR sheet and do not fold it.
- 9. Any candidate found removing pages from the Question Booklet may be disqualified and prosecuted.
- 10. Use of unfair means will disqualify the candidate from the examination.
- 11. Cell phone, calculator or any such devices are not allowed in the Examination Hall.
- 12. No candidate is allowed to leave the seat before handing over the original OMR sheet to the invigilator. Candidate can take Question Booklet and Carbon copy of OMR sheet.

- 5. किसी प्रश्न के अंग्रेजी और हिन्दी रूपान्तरणों में भिन्नता होने की स्थिति में अंग्रेजी रूपान्तरण सही माना जायेगा जहाँ प्रश्न-पत्र दोनों भाषाओं में है।
- 6. सही उत्तर का चयन करें तथा सम्बन्धित [(A) अथवा (B) अथवा (C) अथवा (D)] गोले को ओ.एम.आर. शीट में काला करें।
- किसी प्रश्न में एक से अधिक गोले को काला करने पर उसे जाँचा नहीं जायेगा।
- ओ.एम.आर. शीट पर किसी तरह का चिह्न न बनायें और न ही उसे मोड़ें।
- 9. प्रश्न-पुस्तिका से पृष्ठ निकालते हुए पाये जाने पर परीक्षार्थी को अयोग्य घोषित किया जा सकता है और उसके विरुद्ध विधिक कार्यवाही भी की जा सकती है।
- अनुचित साधनों का उपयोग करने पर परीक्षार्थी को परीक्षा
 के लिए अयोग्य घोषित कर दिया जायेगा।
- सेलफोन, संगणक और ऐसी किसी भी अन्य प्रविधियों
 को परीक्षा भवन में लाने की अनुमित नहीं है।
- 12. ओ.एम.आर. शीट की मूल प्रति वीक्षक को सुपुर्द किये बिना किसी भी परीक्षार्थी को अपना स्थान छोड़ने की अनुमित नहीं है। परीक्षार्थी प्रश्न-पुस्तिका एवं ओ.एम.आर. शीट की कार्बन प्रति को अपने साथ ले जा सकेगा।

1. Arrange the isoelectronic species in increasing of their size.

$$O^{2-}$$
, Al^{3+} , Ne, Mg^{2+} , F, Na

(A)
$$O^{2-} > Al^{3+} > F > Mg^{2+}$$

(B)
$$Al^{3+} > Mg^{2+} > Ne > O^{2-}$$

(C)
$$Al^{3+} > Ne > Mg^{2+} > Na$$

(D)
$$O^{2-} > Ne > Mg^{2+} > Al^{3+}$$

- 2. Which hybridization is having highest stability for carbon?
 - (A) sp
 - (B) sp^4
 - (C) sp^2
 - (D) sp^3
- 3. Arrange the followings into descending order of the dipole moment.

 CH_3F , CH_3CI , CH_3I , CH_3Br

(A)
$$CH_3F > CH_3Cl > CH_3I > CH_3Br$$

(B)
$$CH_3CI > CH_3F > CH_3I > CH_3Br$$

(C)
$$CH_3Cl > CH_3F > CH_3Br > CH_3I$$

(D)
$$CH_3F > CH_3Cl > CH_3Br > CH_3I$$

- 4. Which oxyacid has higher strength of acid?
 - (A) HClO
 - (B) HClO₄
 - (C) HClO₃
 - (D) HClO₂
- 5. Which has smallest atomic radius?
 - (A) C
 - (B) O
 - (C) F
 - (D) N

- 6. Which cation of lanthanide series is having pink color?
 - (A) Er^{3+}
 - (B) Tm^{3+}
 - (C) Pr^{3+}
 - (D) La^{3+}
- 7. _____ type of reaction can be carried out easily in Ferrocene.
 - (A) Nucleophilic substitution reaction
 - (B) Electrophilic elimination reaction
 - (C) Nucleophilic addition reaction
 - (D) Electrophilic substitution reaction
- **8.** Match the following:
 - (a) UV Spectroscopy (i) DC Arc
 - (b) FTIR (ii) Interferometer
 - (c) AES (iii) Xenon flash lamp
 - (d) AAS (iv) Thermal conductivity detector
 - (e) GC (v) Hollow cathode lamp
 - (f) F and P (vi) Deuterium Spectrophotometry discharge lamp
 - (A) (a)-(vi), (b)-(ii), (c)-(i), (d)-(v), (e)-(iv), (f)-(iii)
 - (B) (a)-(vi), (b)-(i), (c)-(ii), (d)-(v), (e)-(iv), (f)-(iii)
 - (C) (a)-(vi), (b)-(ii), (c)-(i), (d)-(v), (e)-(iii), (f)-(iv)
 - (D) (a)-(vi), (b)-(ii), (c)-(v), (d)-(i), (e)-(iv), (f)-(iii)
- 9. Which technique is known as "Zero field NMR"?
 - $(A) \qquad Nuclear\,Quadrupole\,Resonance\,Spectroscopy$
 - (B) Mossbauer Spectroscopy
 - (C) Electron Spectroscopy
 - (D) Carbon 13 NMR Spectroscopy

	(4)			CaT	iO ₃ , when it has Peravskite crystal?
	(A)	$\log \lambda = a + b \log r$	}	(A)	6
	(B)	$k = Ae^{-E/RT}$	•	(B)	4
	(C)	$(K_D)_A = [A]_{org}/[A]_{aq}$	}	(C)	12
	(D)	$\omega = \gamma B_0$	 	(D)	2
				` /	
11.		ording to HMO theory, cyclobutadiene is able because:	16.	The	current deviation method is associated with :
	(A)	Delocalization energy is 0		(A)	Correlation coefficient of variables of two qualitative characters
	(B)	Delocalization energy is -1		(B)	Qualitative measurements
	(C)	Delocalization energy is +1		(C)	Quantitative measurements
	(D)	None of the above		(D)	Variables of qualitative characters
			,		(
12.	How show	many hyperfine lines in ESR spectrum are on by Mn ²⁺ ?	17.		ch of the following is not applicable to cules that form isomers by rotation about single is?
	(A)	7		(A)	Rotational isomers
	(B)	2		(B)	Stereoisomers
	(C)	6		(C)	Configurations
	(D)	8		(D)	Conformations
13.		ch statistics will apply to deuterons and rticles?	18.		ch of the hydrocarbon has exhibited aromatic lization ?
	(A)	В-Е		(A)	Tropylium chloride
	(B)	М-В		(B)	Tropylium cation
	(C)	F-D		(C)	Tropylium anion
	(D)	None of the above	i i	(D)	Tropylium bromide
14.	 matte	is involved in the kinetic theory of er.	19.	form	col-Ponacolone rearrangement takes place by nation of and migration of group.
	(A)	Tyndall effect	<u> </u> 	(A)	Carbocation, electron deficient
	(B)	Pumice stone		(B)	Carbocation, electron donating
	(C)	Brownian motion		(C)	Carbanion, nucleophile
	(D)	Dialysis		(D)	Carbanion, electrophile
107-	Che.	-II 4	1		

15.

What is the co-ordination number Titanium in

What is the equation of Geiger-Nattall law?

10.

20.	. 1,4 Cyclohexadiene from Benzene will formed		25.	Match the correct from the given columns:				
	using	S'		(a)	D-fructose	(i)	Trisaccharide	
	(A)	$Na + NH_3 + H_2O$	Ì	(b)	D-galactose	(ii)	Disaccharide	
	(B)	Na + Ether + Ethanol	}	(c)	Maltose	(iii)	Ketohexose	
	•			(d)	Raffinose	(iv)	Aldohexose	
	(C)	Na + Ethyl alcohol + NH ₃		(A)	(a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)			
	(D)	$Na + dry Ether + NH_3$		(B)	(a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)			
				(C)	(a) - (iii), (b)	- (iv),	(c) - (i), (d) - (ii)	
21.	For synthesis of amide from carboxylic acid and amide reagent is required.			(D)				
	(A)	PCC	26.	What will be the peak area for the ¹ H NMR of Ethane-1-ol?				
	(B)	DCC		(A)	3:1:2			
	(C)	DDQ		(B)	1:2:3			
				(C)	2:3:1			
\mathcal{L}	(D)	CAN		(D)	3:2:1			
22.	react	is used to carry out reaction on less ive group in presence of more reactive group.	27.	bono		s havii	ng hybridized	
	(A)	Synthon		(A)	sp			
		•	}	(B)	sp^2			
	(B)	Resolution		(C)	sp ³	•		
	(C)	Protecting group		(D)	None of the	above	2	
	(D)	symmetric induction	28.	Which one is not considered as a "Green Solvent"?				
			20.	(A)	$NH_3(\mathbf{l})$	orbiac	redusu Greenborvent .	
23.		is a Lindlar catalyst.	İ	(B)	CO ₂ (SC)			
25.		·		(C)	H ₂ O			
	(A)	Pd/CaCO ₃	}	(D)	None of the	above	2	
)	(B)	Na/NH ₃		()				
	(C)	C) CBZ		Give correct instrument technique to analyze the given air pollutants.				
	(D)	BOC		(a)	СО	(i)	GC	
			\	(b)	SO ₂	(ii)	AAS	
24.	Claic	sen rearrangement is an example of		(c)	CH	(iii)	Spectrophotometric	
24.	rearrangement.			(d)	F-	(iv)	ND IR Spectrometry	
	(A)	[2, 3] sigmatropic		(e)	Pb ²⁺	(v)	Potentiometric	
		[3,3] sigmatropic		(A)	(a) - (iv), (b) - (iii), (c) - (i), (d) - (v), (e) - (ii)			
	(B)			(B)			c) - (i), (d) - (iii), (e) - (ii)	
	(C)	(C) [3, 2] sigmatropic		(C)	(a) - (iv), (b) - (ii), (c) - (i), (d) - (v), (e) - (iii)			
	(D)	[2, 4] sigmatropic		(D)	(a) - (i), (b) -	(iii), (c	e) - (iv), (d) - (v), (e) - (ii)	
107	-Che	-II	5				P.T.O.	

- 30. Which state of Carbene is most stable?
 - (A) Singlet
 - (B) Doublet
 - (C) Triplet
 - (D) Quartet
- 31. Nitrene is having _____ electrons.
 - (A) 4
 - (B) 6
 - (C) 7
 - (D) 5
- **32.** Which reactive intermediates having same number of electrons?
 - (A) Carbocation and Carbanion
 - (B) Carbanion and Carbon free radical
 - (C) Carbocation and Carbon free radical
 - (D) Carbene and Carbon free radical
- 33. Which reactive intermediate having chirality (if different groups are attached)?
 - (A) Nitrene
 - (B) Carbene
 - (C) Carbocation
 - (D) Carbanion

34. Arrange the following molecules in the order of increasing acidic strength.

(II) < (III) < (III)

(B) (I) < (II) < (III)

(C) (III) < (I) < (II)

 $(D) \qquad (III) < (II) < (I)$

(A)

35. Identify the compound which does not give effervescence with sodium carbonate solution.

- 36. Meso-2,3-dibromobutane on E2 elimination gives:
 - (A) trans-2-butene
 - (B) cis-2-butene
 - (C) mixture of cis-2-butene and trans-2-butene
 - (D) 1-butene
- 37. Which of the following molecule readily undergoes nucleophilic aromatic substitution with hydroxide ion at room temperature?
 - (A) 4-chlorotoluene
 - (B) 1-chloro-4-nitrobenzene
 - (C) chlorobenzene
 - (D) 1-chloro-2,4,6-trinitrobenzene
- 38. The CMR spectrum of an unknown compound shows six absorptions and the ¹H NMR Spectrum shows five absorptions. Which of the following is the unknown compound?

(A)
$$CH_3$$
 $CH_3 - CH_2 - CH_2 - CH_3$ CH_3

(B)
$$CH_3$$
 $CH_3 - CH_2 - CH_2 - CH_3$

$$_{(D)}^{\text{CH}_3}$$
 $_{(D)}^{\text{CH}_3}$ $_{(D)}^{\text{CH}_3}$ $_{(D)}^{\text{CH}_3}$ $_{(D)}^{\text{CH}_3}$ $_{(D)}^{\text{CH}_3}$

39. The given natural product is:

- (A) Coumarin
- (B) Flavonoid
- (C) Isoflavonoid
- (D) Oxadiazole
- **40.** Which type of symmetry is present in LUMO of 1,3,5 hexatriene?
 - (A) Mirror symmetry
 - (B) C₂ symmetry
 - (C) Both (A) and (B)
 - (D) None of the above
- **41.** The pericyclic reaction given below is an example of :

$$CN$$
 CN
 $COCI$
 $COCI$
 $COCI$
 $COCI$

- (A) [3,3]-sigmatropic rearrangement
- (B) [1, 3]-sigmatropic rearrangement
- (C) [1,5]-sigmatropic rearrangement
- (D) [1, 7]-sigmatropic rearrangement

42. Assign the R and S nomenclature to the C_2 and C_4 chiral centres of the molecule given below.

- (A) 2R, 4S
- (B) 2S, 4R
- (C) 2S, 4S
- (D) 2R, 4R
- 43. The IUPAC name of the following compound along with the Cahn-Ingold-Prelog designation is:

- (A) (3S, 4R, 5S)-3,5-Dichloro-4-methylhexane
- (B) (2S, 3S, 4S)-2,4-Dichloro-3-methylhexane
- (C) (2S, 3R, 4R)-2,4-Dichloro-3-methylhexane
- (D) (2S, 3R, 4S)-2,4-Dichloro-3-methylhexane
- 44. Name cholesterol lowering drug in the blood.
 - (A) Isoniazid
 - (B) Norethindrone
 - (C) Atorvastatin
 - (D) Tamsulosin hydrochloride
- **45.** Name the sugar free sweetener which has chlorine atoms in its structure.
 - (A) Sucralose
 - (B) Aspartame
 - (C) Saccharin
 - (D) Neotame

46. The reagent used for the conversion of :

$$H_2C(COOC_2H_5)_2 \xrightarrow{?} O = C(COOC_2H_5)_2$$
 is:

- (A) Conc. HNO₃
- (B) Conc. $HNO_3 + dil. H_2SO_4$
- (C) $K_2Cr_2O_7 + H_2SO_4$
- (D) SeO_2/H_2SeO_3
- 47. Conversion of Quaternary salts containing an electron withdrawing group on the carbon attached to the nitrogen atom undergo rearrangement to tertiary amine on treatment with NaNH₂ is known as:
 - (A) Stevens Rearrangement
 - (B) Favorskii Rearrangement
 - (C) Beckmann Rearrangement
 - (D) Wolf Rearrangement

is known as:

- (A) Demjanov Rearrangement
- (B) Hofmann Rearrangement
- (C) Lossen Rearrangement
- (D) Neber Rearrangement
- **49.** Assign the structure to compound [X]

$$[X] + 3HIO_3 \rightarrow 2HCOOH + 2HCHO$$

(A)
$$CH_2-CH-CH-CH_2OH$$

OH OH OH

(B)
$$HOCH_2-CH-CH_2-CH_2OH$$

OH

(C)
$$CH_2-CH_2-CH_2-CH_2$$

OH OH

$$\begin{array}{ccc} & \text{HOCH}_2\text{--}\text{C}\text{--}\text{CH}_2\text{--}\text{CH}_2 \\ \text{(D)} & & \text{O} & \text{OH} \end{array}$$

50. In alkaloid Herzig-Meyer's method is used:

- (A) To detect and estimate the number of methyl groups attached to N atom
- (B) To detect and estimate the number of methyl groups attached to C atoms
- (C) To detect and estimate the number of methoxyl groups attached to C atoms
- (D) None of the above

51. Correct structure for Morphine is:

52. Base catalysed rearrangement of o-acyloxy ketone to β -diketone.

$$COCH_3$$
 base $OCOC_6H_5$

is termed as:

- (A) Bamberger rearrangement
- (B) Baker-Venkataraman rearrangement
- (C) Benzilic acid rearrangement
- (D) Beckmann rearrangement

53. Identify the Collmann's reagent.

- (A) $CrO_3 \cdot 2C_2H_5N$
- (B) $Na_2Fe(CO)_4$
- (C) $RhCl(Ph_3P)_3$
- $\bigoplus_{\text{(D)}} \bigoplus_{\text{MeOOCNSO}_2\text{N(CH}_3)_3}$

54. The E or Z configuration for the following molecule is:

- (A) 4E, 8E
- (B) 4E, 8Z
- (C) 4Z, 8Z
- (D) 4Z, 8E

- 55. In the spectrum of p-aminoanisole, the molecular ion peak appears at m/z 123 and a daughter ion is obtained on loss of a methyl radical, the position of the metastable ion peak will be at m/z:
 - (A) 93.08
 - (B) 140.08
 - (C) 94.82
 - (D) 96.59
- **56.** The ¹H NMR data of an organic compound with molecular mass 88 is given below:

 $1.23 \,\delta$, t, 3H; $1.97 \,\delta$, s, 3H; $4.06 \,\delta$, q, 2H

The correct structure of the compound is:

(A)
$$CH_3 - CH_2 - C - OCH_3$$

(B)
$$CH_3 - C - OCH_2 - CH_3$$

(C)
$$CH_3 - CH_2 - CH_2 - C - OH$$

(D)
$$CH_3 - C - CH_2 - CH_2 - OH$$

- 57. Methanamide shows two absorption bands between 3400-3500 cm⁻¹, on treatment with phosphorus pentoxide, the product formed absorbs at:
 - (A) 2256 cm^{-1}
 - (B) 3250 cm^{-1}
 - (C) 1750 cm^{-1}
 - (D) 3600 cm^{-1}
- 58. In α , β -unsaturated carboxyl compounds, which of the following absorption bands shifts to longer wavelength on increasing polarity of the solvent?
 - (A) $\pi \to \pi^*$
 - (B) $n \to \pi^*$
 - (C) $n \to \sigma^*$
 - (D) $\sigma \rightarrow \sigma^*$

- 59. Of the following dienophiles, which one is the most reactive with 1,3-butadiene?
 - (A) $CH_2 = CH COOCH_3$

(C)
$$CH_3OOC$$
 $CH = CH$ $COOCH_3$

- (D) $CH_2 = CH OCH_2CH_3$
- 60. In the following allylicphenyl ether, which side chain carbon makes a new bond to the benzene ring upon Claisen rearrangement?

$$0 \qquad 1 \qquad 3 \qquad 4$$

- (A) C-1
- (B) C-2
- (C) C-3
- (D) C-4
- 61. Citral and α -Terpineol are:
 - (A) Bicyclic monoterpenoids
 - (B) Monocyclic monoterpenoids
 - (C) Acyclic sesquiterpenoids
 - (D) Acyclic diterpenes
- 62. In the reaction between alkylhalide and hydroxide ion, increase in the polarity of solvent generally:
 - (A) increases rate of SN² reaction
 - (B) increases rate of SN¹ reaction
 - (C) decreases rate of SN¹ reaction
 - (D) does not alter rate of SN¹ and SN² reactions

- 63. Which of the following reactions takes place through a carbene intermediate?
 - (A) Diazonium coupling
 - (B) Perkin reaction
 - (C) Reimer-Tiemann reaction
 - (D) Reformatsky reaction
- 64. In case of Hofmann bromamide degradation reaction, intermediate RNCO is formed by:
 - (A) intramolecular migration
 - (B) intermolecular migration
 - (C) hydrolysis of RCONH₂
 - (D) None of the above

65.
$$\begin{array}{c} CH_3 & CH_3 \\ CH_3 - C - CH = CH_2 \longrightarrow CH_3 - C - CH - CH_3 \\ CH_3 & CH_3 & OH \end{array}$$

This change can be done by:

- (A) Oxymercuration Demercuration
- (B) Acid catalysed hydration
- (C) Hydroboration oxidation
- (D) All of the above

66.
$$CH_2=CH-CH_2-CH=CH_2 \xrightarrow{NBS} A$$

The possible structure of product "A" is:

(A)
$$CH_2 = CH - CH_2 - C = CH_2$$

Br

(B)
$$CH_2 = CH - CH_2 - CH = CH - Br$$

(C)
$$CH_2 = CH - CH - CH = CH_2$$

$$Br$$

(D)
$$CH_2 = CH - CH = CH - CH_2 - Br$$

- 67. The diameter of an atom is how many times the diameter of the nucleus?
 - (A) 10^2 times
 - (B) 10^3 times
 - (C) 10^4 times
 - (D) 10^6 times
- 68. 1 eV of energy is equivalent to a photon with wavelength about:
 - (A) 30 Å
 - (B) 300 Å
 - (C) 1200 Å
 - (D) 12000 Å
- 69. The most probable distance at which 1s electron of H-like atom is found will be:
 - (A) $\frac{Z}{a_0}$
 - (B) $\frac{Z^3}{a_0}$
 - (C) $\frac{a_0}{Z}$
 - (D) a_0/Z^3
- 70. Centre of inversion is absent in the following point group:
 - (A) D_{2h}
 - (B) D_{4h}
 - (C) D_{6h}
 - (D) T_d

- 71. Which of the following species possesses both C_3 and C_2 axes?
 - (A) SO_3
 - (B) NH₃
 - (C) PCl₃
 - (D) $[H_3O]^+$
- 72. Which molecule or ion have D_{3h} symmetry?
 - (A) $[H_3O]^+$
 - (B) CHCl₃
 - (C) $[CO_3]^{2-}$
 - (D) NF₃
- 73. If \hat{H} is the Hamiltonian and using the trial function for H_2^+ molecular ion, the energy of antibonding orbital is given by:
 - (A) $\frac{H_{aa} + H_{ab}}{1 S_{ab}}$
 - $(B) \qquad \frac{H_{aa} + H_{ab}}{1 + S_{ab}}$
 - $(C) \qquad \frac{H_{aa} H_{bb}}{1 S_{bb}}$
 - $(D) \qquad \frac{H_{aa} H_{ab}}{1 S_{ab}}$
- **74.** For ethylene molecule the coefficient of atomic orbital wave function are:
 - (A) $\frac{1}{2}, \frac{-1}{2}$
 - $(B) \qquad \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$
 - (C) $\frac{1}{4}, \frac{-1}{4}$
 - (D) $\frac{1}{2\sqrt{2}}, \frac{-1}{2\sqrt{2}}$

- 75. If E_0 is zero point energy of a harmonic oscillator of frequency v and h is Planck's constant, then its energy in the n=2 state will be:
 - (A) $(E_0 + hv)$
 - (B) $2E_0$
 - (C) $4E_0$
 - (D) (E₀+2hυ)
- 76. The de-Broglie wavelength of a particle having kinetic energy E_k is given by:
 - (A) $\lambda = \frac{h}{\sqrt{E_k}}$
 - (B) $\lambda = \frac{h}{\sqrt{2mE_k}}$
 - (C) $\lambda = \frac{h}{\sqrt{mE_k}}$
 - $(D) \qquad \lambda = \frac{h}{\sqrt{3mE_k}}$
- 77. The compound DPPH, used for calibrating ESR spectra, shows ESR spectrum consisting of a:
 - (A) 1:4:6:4:1 quintet
 - (B) 1:3:3:1 quartet
 - (C) 1:2:3:2:1 quintet
 - (D) equally intense quartet
- 78. The increase in rotational energy shows absorption spectrum in:
 - (A) I.R. region
 - (B) U.V. region
 - (C) Visible region
 - (D) Microwave region

- **79.** The relation between De and Do, the two dissociation energies of a SHO is:
 - (A) De=Do+ $\frac{h\nu}{2}$
 - (B) $De = Do + 2h\nu$
 - (C) $De = Do + h\nu$
 - (D) Do=De+ $\frac{h\nu}{2}$
- **80.** Which of the following molecules can show a pure rotational microwave spectrum?
 - (A) N_2
 - (B) CO₂
 - (C) OCS
 - (D) HCl
- **81.** Zeta potential or electrokinetic potential depends on :
 - (A) Viscosity
 - (B) Dielectric constant
 - (C) Velocity of colloidal particles when electric field is applied
 - (D) All of the above
- 82. Aluminium hydroxide forms a positively charged sol. Which of the following ionic substances should be most effective for coagulating the sol?
 - (A) NaCl
 - (B) CaCl₃
 - (C) $\operatorname{Fe}_2(SO_4)_3$
 - (D) K_3PO_4

- 83. Colloidal solutions of gold prepared by different methods are of different colours because of:
 - (A) different diameters of colloidal gold particles
 - (B) variable valency of gold
 - (C) different concentration of gold particles
 - (D) impurities produced by different methods
- **84.** Flocculation value of a coagulating electrolyte is expressed in :
 - (A) millimol L^{-1}
 - (B) $mol L^{-1}$
 - (C) $mg K^{-1}$
 - (D) micro gram mL^{-1}
- 85. Which one of the following has the largest band gap energy?
 - (A) Germanium
 - (B) Silicon
 - (C) Diamond
 - (D) Tellurium
- **86.** The arrangement of sulphur in Zinc blende and Wurtzite structure respectively are:
 - (A) hexagonal close packing and cubic close packing
 - (B) cubic close packing and hexagonal close packing
 - (C) simple cubic close packing in both the structures
 - (D) hexagonal close packing in both the structures

- 87. Sodium metal crystallizes in body centred cubic lattice with cell edge 'a'. The radius of the sodium atom is:
 - (A) $\frac{a}{\sqrt{2}}$
 - (B) $\frac{a\sqrt{3}}{2}$
 - (C) $\frac{a\sqrt{3}}{4}$
 - (D) $\frac{a}{2\sqrt{2}}$
- 88. The area of a Carnot cycle on a T-S diagram represents:
 - (A) heat absorbed from the source
 - (B) work done in a cycle
 - (C) heat rejected to the sink
 - (D) efficiency of the engine
- 89. Which of the following expresses the second law of thermodynamics? All the symbols have their usual meaning:
 - (A) $\Delta S \leq O$
 - (B) $\Delta S < \frac{Q}{T}$
 - (C) $\Delta F \leq W$
 - (D) $\Delta V = Q + W$
- **90.** Which of the following relation between energy E and microcanonical partition function Z is true?
 - (A) $E = -N \frac{\partial}{\partial T} \log Z$
 - (B) $E = NkT^2 \left[\frac{\partial (\log Z)}{\partial T} \right]_V$
 - (C) $E = -NkT \log Z$
 - (D) $E = NkT \frac{\partial}{\partial V} \log Z$

- 91. An assembly has only two particles, which are to be arranged in three phase cells. The possible number of arrangements in B-E statistics is:
 - (A) Two
 - (B) Nine
 - (C) Six
 - (D) Three
- **92.** Supporting electrolyte is used in polarography to suppress:
 - (A) Diffusion current
 - (B) Migration current
 - (C) Convection current
 - (D) Residual current
- 93. Gibbs free energy change for a cell reaction is positive. What does it indicate?
 - (A) Cell will discharge easily
 - (B) Cell reaction is spontaneous
 - (C) Cell reaction is non-spontaneous
 - (D) Cell will work under standard conditions
- **94.** Which of the following can be used for cathodic protection?
 - (A) Al
 - (B) Cd
 - (C) Cu
 - (D) Any of these
- 95. The standard emf of a galvanic cell involving cell reaction with n = 2 was found to be 0.295 V at 25°C. The equilibrium constant of the reaction would be:
 - (A) 2×10^{11}
 - (B) 4×10^{12}
 - (C) 1×10^{10}
 - (D) 1×10^2

96.	The rate constant is given by equation $K = P.Ze^{-Ea/RT}$. Which factor should register a decrease for the reaction to proceed more rapidly?				
	(A)	Т			
	(B)	z			
	(C)	Ea			
	(D)	P			
97.	High due t	quantum yield of photochemical reactions are			
	(A)	lowering of activation energy			
)	(B)	high frequency of collision			
	(C)	formation of free radicals			
	(D)	accompanying side reactions			
98.		polymer used in electrodes in rechargeable eries is:			
	(A)	Conducting Polyaniline			
	(B)	Teflon			
	(C)	Polyacetylene			
	(D)	Polyaniline			
99.		t is the effect of increasing molecular weight on ing temperature of polymer?			
	(A)	Increases linearly			
	(B)	Increases non-linearly			
	(C)	Decreases exponentially			
	(D)	Decreases linearly			

- **100.** With the increase in absolute error the value of the relative error:
 - (A) increases
 - (B) decreases
 - (C) remains same
 - (D) first decreases then increases

-000-